FEATURES

- –55° to +125°C operation
- 16 to 40 VDC input
- · Fully isolated
- Magnetic feedback
- Fixed frequency 600 kHz typical
- Topology Single Ended Forward
- 50 V for up to 50 ms transient protection
- Inhibit and synchronization functions
- Indefinite short circuit protection
- Up to 30 watts output power

Flanged:

- Trim and remote sense on single output models
- Up to 84% efficiency

DC/DC CONVERTERS 28 VOLT INPUT

MTR SERIES 30 WATT

MTR28055F A MTR DC-DC CONVERTER Interpoint Beo SN 2501 DC 9927 SC 02 MADE IN USA REDMOND, WA CADE 59531

MODELS											
VDC OUTPUT											
SINGLE	DUAL	TRIPLE									
3.3	±5	+5 &									
5	±12	±12									
12	±15	+5 &									
15		±15									
18											

Size (max): Non-flanged: Single and dual output models, case H2 (H4 for MTR Dual with standard or ES screening, ht 0.417", 10.59 mm) 2.125 x 1.125 x 0.400 inches (53.98 x 28.58 x 10.16 mm)

Triple output models, case F1, 1.950 x 1.350 x 0.405 inches (49.53 x 34.29 x 10.29 mm)

Single and dual output models, case K3 (or K5 for MTR Dual with standard or ES screening, ht. 0.417", 10.59 mm) 2.910 x 1.125 x 0.400 inches (73.91 x 28.58 x 10.16 mm)

Triple output models, case J1, 2.720 x 1.350 x 0.405 inches (69.09 x 34.29 x 10.29 mm)

Weight: Single and dual non-flanged 50 grams max., flanged 52 grams max. Triple non-flanged 58 grams max., flanged 62 grams max.

Screening: Standard, ES, or 883 (Class H).

DESCRIPTION

The MTR Series[™] of DC/DC converters offers up to 30 watts of output power from single, dual, or triple output configurations. They operate over the full military temperature range with up to 84% efficiency. MTR converters are packaged in hermetically sealed metal cases, making them ideal for use in military, aerospace and other high reliability applications.

CONVERTER DESIGN

The MTR converters are constant frequency, pulse-width modulated switching regulators which use a quasi-square wave, single ended, forward converter design. Tight load regulation is maintained via wide bandwidth magnetic feedback and, on single output models, through use of remote sense. On dual output models, the positive output is independently regulated and the negative output is cross regulated through the use of tightly coupled magnetics and shunt regulators. The MTR Series triple output DC/DC converter's design includes individual regulators on the auxiliary outputs which provide for no cross regulation error when a minimum 500 mA load is maintained on the main (+5) output.

Indefinite short circuit protection and overload protection are provided by a constant current-limit feature. This protective system senses current in the converter's secondary stage and limits it to approximately 115% of the maximum rated output current.

MTR converters are provided with internal filtering capacitors that help reduce the need for external components in normal operation. For systems that require compliance with MIL-STD-461C's CE03 standard, Interpoint offers filter/transient suppression modules (including the FMC-461, FMD-461 and FM-704A series filters) which will result in compliance. Contact your Interpoint representative for further details.

SYNCHRONIZATION

Synchronizing the converter with the system clock allows the designer to confine switching noise to clock transitions, minimizing interference and reducing the need for filtering. In sync mode, the converter will run at any frequency between 500 kHz and 675 kHz. The sync control operates with a quasi-TTL signal at any duty cycle between 40% and 60%. The sync pin must be connected to input common pin when not in use.

WIDE VOLTAGE RANGE

MTR converters are designed to provide full power operation over a full 16 to 40 VDC voltage range. Operation below 16 volts, including MIL-STD-704E emergency power conditions is possible with derated power. Refer to the low line dropout graph (Figure 22) for details.

IMPROVED DYNAMIC RESPONSE

The MTR Series feed-forward compensation system provides excellent dynamic response and noise rejection. Audio rejection is typically 50 dB. The minimum to maximum step line transient response is typically less than 4%.

INHIBIT FUNCTION

MTR converters provide an inhibit terminal that can be used to disable internal switching, resulting in no output and very low quiescent input current. The converter is inhibited when a TTL compatible low (≤ 0.8 V) is applied to the inhibit pin. The unit is enabled when the pin, which is internally connected to a pull-up resistor, is left unconnected or is connected to an open-collector gate. The open circuit output voltage associated with the inhibit pin is 9 to 11 V. In the inhibit mode, a maximum of 8 mA must be sunk from the inhibit pin.

ABSOLUTE MAXIMUM RATINGS

Input Voltage 16 to 40 VDC

Output Power

- 25 to 30 watts depending on model Lead Soldering Temperature (10 sec per pin)
- 300°C Storage Temperature Range (Case) • -65°C to +135°C

RECOMMENDED OPERATING CONDITIONS

Input Voltage Range

- 16 to 40 VDC continuous
 50 V for 50 msec transient
- Case Operating Temperature (Tc)
- –55°C to +125°C full power –55°C to +135°C absolute
- Derating Output Power/Current

Linearly from 100% at 125°C to 0% at 135°C

SYNC AND INHIBIT Sync (500 to 675 kHz)

DC/DC CONVERTERS

- Duty cycle 40% min, 60% max
 Logic low 0.8 V max
- · Logic high 4.5 V min, 5 V max
- Referenced to input common • If not used, connect to input common
- Inhibit TTL Open Collector
- Logic low (output disabled) Voltage ≤0.8 V Inhibit pin current 8.0 mA max
- Referenced to input common
- Logic high (output enabled) Open collector

Output Voltage Temperature Coefficient • 100 ppm/°C typical single and dual outputs • 200 ppm/°C main, 300 ppm/°C aux triple output Input to Output Capacitance 50 pF typ (100 pF typ triple outputs) Current Limit 115% of full load typical Isolation • 100 megohm minimum at 500 V Audio Rejection 40 dB typ (50 dB typ triple output)l Onversion Frequency Free run 550 min, 600 typ, 650 max kHz External sync 500 to 675 kHz Inhibit Pin Voltage (unit enabled)

TYPICAL CHARACTERISTICS

• 9 to 11 V

Electrical Characteristics: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

SINGLE OUTPUT MODELS		M	TR283F	R3S	M	TR280	5S	м	TR281	2S	M	TR281	5S	M	TR281	BS	
PARAMETER	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE		3.27	3.30	3.33	4.95	5.00	5.05	11.88	12.00	12.12	14.85	15.00	15.15	17.82	18.00	18.18	VDC
OUTPUT CURRENT ¹	V _{IN} = 16 to 40 VDC	0		6.06	0	_	5.0	0		2.5	0		2.0	0		1.67	A
OUTPUT POWER ¹	V _{IN} = 16 to 40 VDC	0	_	20	0	_	25	0	_	30	0	-	30	0	_	30	W
OUTPUT RIPPLE	10 kHz – 2 MHz	-	15	40	-	35	50	-	25	50	_	25	50	_		40	
VOLTAGE	$Tc = -55^{\circ}C TO + 125^{\circ}C$	-	-	50	_	50	90	—	40	90	-	40	90	_	_	90	mV p-p
LINE REGULATION ²	Vin = 16 to 40 VDC	—	5	10	-	10	30	_	10	30	_	10	30	_	_	30	
	Tc = $-55^{\circ}C$ TO $+125^{\circ}C$	_	_	10	_	15	50	-	15	50	-	15	50	_	_	50	mV
LOAD REGULATION	NO LOAD TO FULL	-	2	10	-	5	30	-	5	30	-	5	30	-	_	30	
	$Tc = -55^{\circ}C TO + 125^{\circ}C$	—	—	10	—	15	50	—	15	50	—	15	50	—	—	50	mV
INPUT VOLTAGE ¹	CONTINUOUS	16	28	40	16	28	40	16	28	40	16	28	40	16	28	40	VDC
NO LOAD TO FULL	TRANSIENT 50 ms	—	—	50	-	—	50	-	—	50	-	—	50	—	—	50	V
INPUT CURRENT ¹	NO LOAD	_	30	75	_	35	75	_	35	75	_	35	75	_		50	mA
	FULL LOAD	-	0.94	_	_	1.15	_	-	1.30	_	_	1.25	_	_	1.33	_	Α
	INHIBITED	_	7	8	_	3	8	—	3	8	_	3	8	_	_	8	mA
INPUT RIPPLE	10 kHz – 10 MHz																
CURRENT	Tc = -55°C TO +125°C	_	25	50	_	20	50	-	20	50	_	20	50	_	_	50	mA p-p
EFFICIENCY		74	76	_	76	78	_	80	83	_	81	84	_	81	_	_	%
LOAD FAULT ³	SHORT CIRCUIT																
	POWER DISSIPATION	_	_	10	_	_	10	-	_	10	_	_	10	_	_	10	W
	RECOVERY ^{1, 4}	_	1.4	6	_	1.4	5	-	1.4	5	_	1.4	5	_	1.4	_	ms
STEP LOAD RESP.	50% - 100% - 50%																
	TRANSIENT	—	±125	±250	—	±200	±300	—	±250	±400	—	±350	±500	-	—	±600	mV pk
	RECOVERY ⁴	-	—	200	-	60	200	-	60	200	-	60	200	-	60	_	μs
STEP LINE RESP.	16 – 40 – 16 VDC																
	TRANSIENT ⁵	—	—	±300	—	±200	±300	—	±400	±500	—	±500	±600	—	±500	—	mV pk
	RECOVERY ⁴	-	—	300	-	—	300	-	_	300	_	—	300	_	300	_	μs
START-UP1	DELAY	_	1.4	5	_	1.4	5	_	1.4	5	_	1.4	5	_	_	5	ms
	OVERSHOOT																
	FULL LOAD	_	0	50	-	0	50	-	0	120	_	0	150	_	0	_	
	NO LOAD	-	33	150	-	50	250	-	120	600	-	150	750	-	—	—	mV pk

Notes

1. Tc = -55°C to +125°C

2. Operation is limited below 16V (see Figure 22).

3. Indefinite short circuit protection not guaranteed above 125°C case.

4. Recovery time is measured from application of the transient to point at which Vout is within 1% of final value.

5. Transition time ≥10 µs.

MTR SERIES 30 WATT

Electrical Characteristics: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

DUAL OUTPUT MODELS			MTR2805D				TR2812		MTR2815D			
PARAMETER	CONDITIO	DNS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE		+V _{OUT}	4.95	5.00	5.05	11.88	12.00	12.12	14.85	15.00	15.15	VDC
		-V _{OUT}	4.92	5.00	5.07	11.82	12.00	12.18	14.77	15.00	15.23	VDC
OUTPUT CURRENT ^{1, 2}	V _{IN} = 16 TO 4		0	2.5	4.5	0	1.25	2.25	0	1.0	1.8	А
OUTPUT POWER ^{1, 2}	V _{IN} = 16 TO 4	40 VDC	0	_	25	0	_	30	0	_	30	W
OUTPUT RIPPLE	10 kHz - 2	MHz	_	20	50	-	30	80	-	25	80	
VOLTAGE +/- V _{OUT}	Tc = -55°C TO	+125°C	_	40	80	-	40	120	—	40	120	mV p-
LINE REGULATION ³		+V _{OUT}	_	10	50	-	10	30	-	10	30	
V _{IN} = 16 TO 40 VDC		-V _{OUT}	_	50	100	-	50	120	-	50	150	mV
	Tc = -55°C	+V _{OUT}	—	10	50	-	10	50	-	10	50	mv
	TO +125°C	-V _{OUT}	_	50	100	-	50	150	—	50	180	
LOAD REGULATION		+V _{OUT}	_	5	30	-	15	30	-	15	30	
NO LOAD TO FULL		-V _{OUT}	_	25	50	-	30	120	-	30	150	mV
	Tc = -55°C	+V _{OUT}	_	5	50	-	15	50	-	15	50	mv
	TO +125°C	-V _{OUT}	_	25	100	-	30	180	-	30	180	
CROSS REGULATION	SEE NOT		_	7	12	-	4	8.3	-	3	8	%
EFFECT ON -V _{OUT}	SEE NOT	E 5	_	4	6	_	4	6	_	4	6	70
INPUT VOLTAGE ¹	CONTINU	SUS	16	28	40	16	28	40	16	28	40	VDC
NO LOAD TO FULL	TRANSIENT	50 ms	0	_	50	0	_	50	0	_	50	V
INPUT CURRENT	NO LOA			35	75	-	50	75		50	75	mA
	FULL LOAD		_	1.10	_	—	1.34	_	—	1.29	—	A
	INHIBITE	Ð	_	3	8	-	3	8		3	8	mA
INPUT RIPPLE												
CURRENT ¹	10 kHz - 10	MHz	_	15	50	_	20	50		20	50	mA p-
EFFICIENCY			76	78		78	81	_	80	83	_	%
LOAD FAULT ⁶	POWER DISS	-										
	SHORT CIR		_		10	_		10			10	W
	RECOVE		_	1.4	5.0	-	1.4	5.0		1.4	5.0	ms
STEP LOAD	50 - 100 - 50%	-										
RESPONSE $\pm V_{OUT}$	TRANSIE		_	±200	±300	-	±150	±300	-	±200	±400	mV p
	RECOVE			100	200	-	100	200	_	100	200	μs
STEP LINE	16 - 40 - 1											
RESPONSE $\pm V_{OUT}$	TRANSIE	NT ⁸	-	±200	±400	—	±200	±400	-	±400	±500	mV p
	RECOVE		_		300	-	_	300	-	_	300	μs
START-UP ¹	DELAY	<i>'</i>	_	1.4	5	_	1.4	5	_	1.4	5	ms
	OVERSHO	тос										
	FULL LO	AD	—	0	50	-	0	120	—	0	150	m\/ -
	NO LOA	D		50	250	_	120	600	_	150	750	mV pl

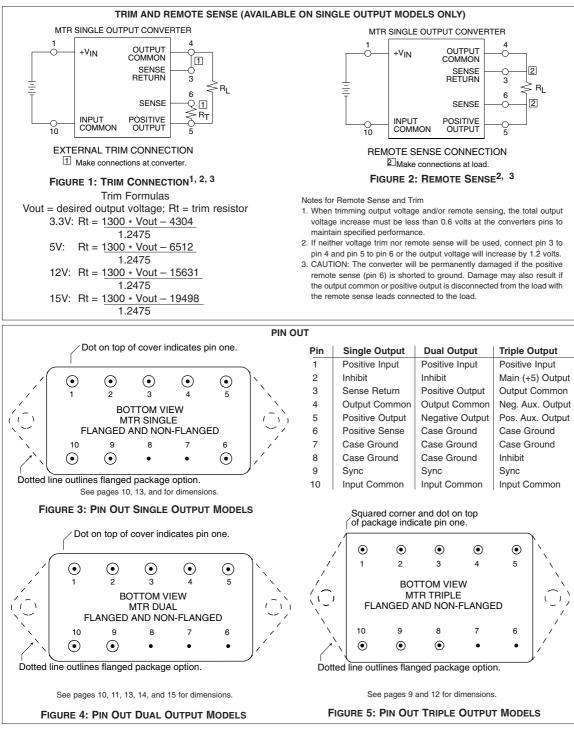
Notes

1. Tc = -55°C to +125°C.

- 2. Up to 90% of the total output current/power is available from either output providing the positive output is carrying at least 10% of the total output . power.
- a) Operation is limited below 16 V (see Figure 22).Vout is within 1% of final4. Effect on the negative output under the following conditions:
 $+P_{out}$ 20% to 80%; $-P_{out}$ 80% to 20%8. Transition time \ge 10 µs.
- Effect on the negative output under the following conditions: +P_{out} 50%; -P_{out} 10% to 50%
 Indefinite short circuit protection not guaranteed above 125°C case.
- 7. Recovery time is measured from application of the transient to point at which
 - Vout is within 1% of final value.

DC/DC CONVERTERS

Electrical Characteristics: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.


TRIPLE OUTPUT MODELS			MTR2851	2T					
PARAMETER	PARAMETER CONDITION			TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	MAI	N	4.95	5.0	5.05	4.95	5.0	5.05	
	+ AUXIL	.IARY	11.82	12.0	12.18	14.77	15.0	15.23	VDC
	– AUXIL	.IARY	11.82	12.0	12.18	14.77	15.0	15.23	1
OUTPUT CURRENT ¹	MAI	MAIN		_	4.0	0.5	_	4.0	
V _{IN} = 16 TO 40	+ AUXIL	_	0.416	0.750	_	0.333	0.600	A	
	– AUXIL	_	0.416	0.750	_	0.333	0.600	1	
OUTPUT POWER ¹	MAI	N	_	20	20	_	20	20	
V _{IN} = 16 TO 40	+ AUXIL	.IARY	_	5	9	_	5	9	w
	– AUXIL	_	5	9	-	5	9	- **	
	TOT	AL	_	_	30	_	_	30	1
OUTPUT RIPPLE		MAIN	_	50	115	_	50	115	
VOLTAGE	10 kHz to 2 MHz ± AUXILIARY			20	80	_	20	80	mV p-p
LINE REGULATION	IE REGULATION MAIN		_	10	20	_	10	20	mV
V _{IN} = 16 TO 40	±AUXILIARY			25	60	_	30	75]
LOAD REGULATION ^{2, 3}	MAI	_	10	20	_	10	50		
	± AUXIL	IARY	_	30	75	_	30	75	mV
INPUT VOLTAGE	CONTIN	16	28	40	16	28	40		
	TRANSIEN	_	_	50	_	_	50		
INPUT CURRENT	NO LO	NO LOAD			100	_	70	100	mA
	FULL L	OAD	_	1.37	1.45	_	1.37	1.45	A
	INHIBI	TED	_	3.0	8	_	3.0	8	mA
INPUT RIPPLE CURRENT	10 kHz TO	10 MHz	_	20	40	_	20	40	mA p-
EFFICIENCY			72	75	_	73	75	_	%
LOAD FAULT ⁴	POWER DIS	SIPATION							
	SHORT C	IRCUIT							
	ALL OUTPUTS SI	HORTED TOTAL	_	_	14	_	_	14	w
	RECOVERY EA	CH OUTPUT	_	1.4	2.0	_	1.4	2.0	ms
STEP LOAD RESPONSE		MAIN	_	150	250	_	150	250	
	TRANSIENT ⁵	± AUXILIARY	_	500	750	_	500	750	mV
	BECOVERY ⁶	MAIN	_	0.05	0.10	_	0.05	0.10	ms
	RECOVERT	± AUXILIARY		3	5		2	5	1115
STEP LINE RESPONSE	TRANSIENT	MAIN	_	150	250		150	250	mV
V _{IN} = 16 TO 40		± AUXILIARY	_	100	250		100	250	
START-UP	DEL	AY MAIN		1.4 0	2.0 500		1.4 0	2.0 500	ms
	OVERSHOOT	± AUXILIARY		0	1500		0	1500	mV
		± AUXILIARY	—	U	1500	-	U	1500	

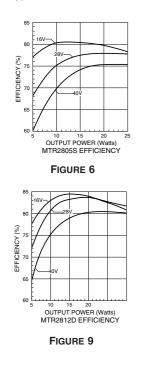
Notes

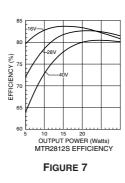
- 1. The sum of the two aux outputs is not to exceed 10 watts. The maximum load per aux output is 9 watts. 2. To maintain regulation when operating the ±Aux at full load, a minimum load
- of 500 mA is required on the main.
- 4. Indefinite short circuit protection not guaranteed above 125°C (case). 5. Response of each output as all outputs are simultaneously transitioned. Main: 50% - 100% - 50% of main full load
- Auxiliaries: 25% 50% 25% each, of total auxiliary full load
- 6. Recovery time is measured from application of the transient to point at which Vout is within 1% of regulation.
- 3. Measured on each output one at a time with the other outputs at full load.

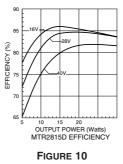
MTR SERIES 30 WATT

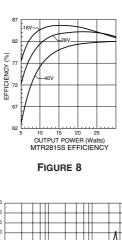
CRANE | interpoint

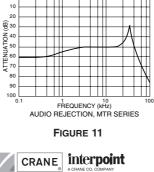
ROSPAC

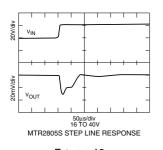

DC/DC CONVERTERS


SMD NU	JMBERS
STANDARD MICROCIRCUIT	MTR SERIES
DRAWING (SMD)	SIMILAR PART
5962-0150101HXC	MTR283R3S/883
5962-9306801HXC	MTR2805S/883
5962-9306901HXC	MTR2812S/883
5962-9307001HXC	MTR2815S/883
5962-9320201HXC	MTR2818S/883
5962-9320501HXC	MTR2805D/883
5962-9307101HXC	MTR2812D/883
5962-9307201HXC	MTR2815D/883
5962-9307301HXC	MTR28512T/883
5962-9307401HXC	MTR28515T/883
number. The SMD number show	n change the "X" to "Z" In the SMD vn is for Class H screening, non- or an SMD product, refer to the SMD


drawing. SMDs can be downloaded from: http://www.dscc.dla.mil/programs/smcr


MODEL NUMBERING KEY	
MTR 28 512 T F / 84 Input Voltage	33
(Standard screening has no designator in this position.)	

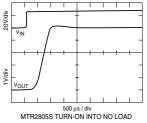
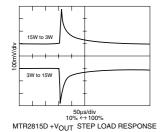

Typical Performance Curves: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.



FROSPAC

MTR SERIES 30 WATT

Typical Performance Curves: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

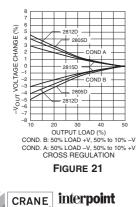


FIGURE 15

ROSPA

W to 12.5W 100mV/div 5W to 25W 50µs/div 50% ↔100% MTR2805S STEP LOAD RESPONSE

FIGURE 13

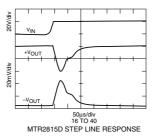
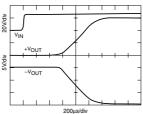



FIGURE 16

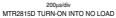
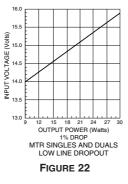



FIGURE 19

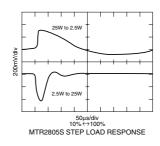


FIGURE 14

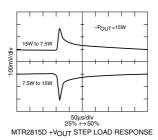
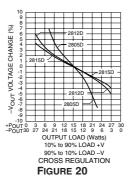
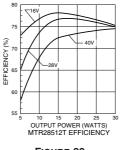
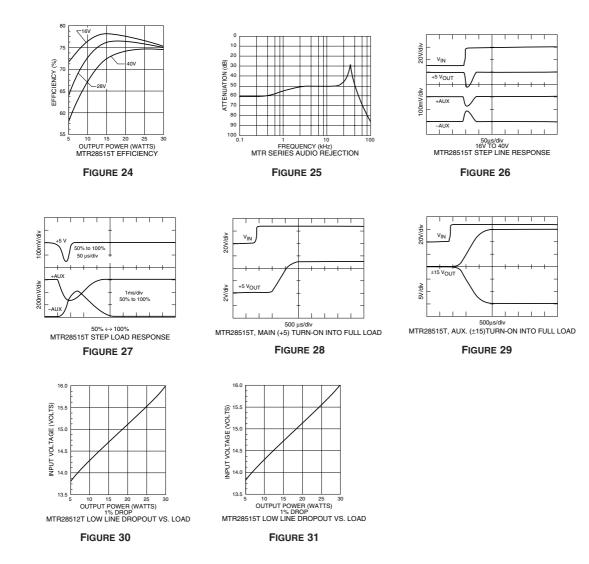
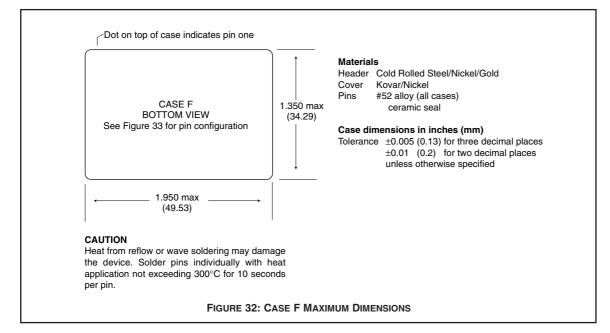
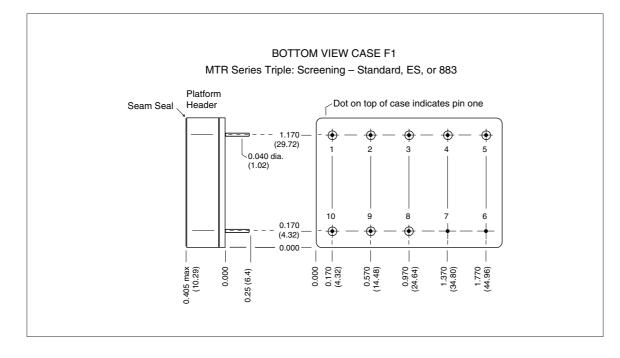




FIGURE 17

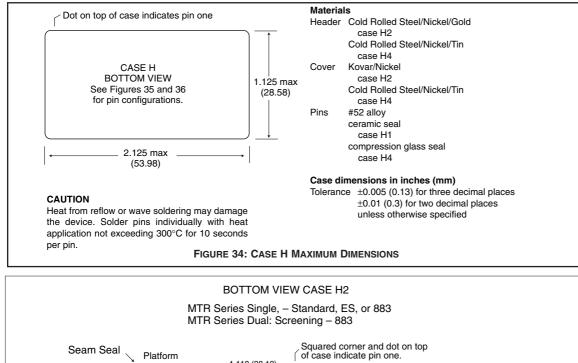


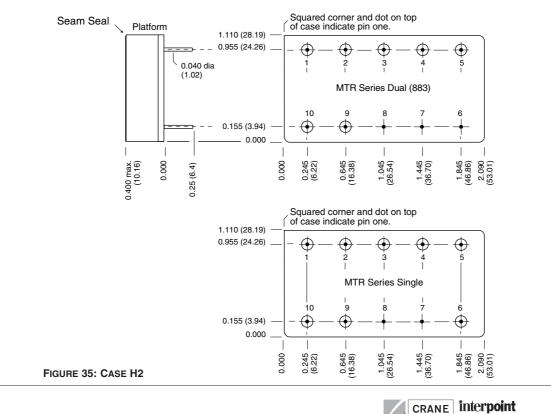

DC/DC CONVERTERS


Typical Performance Curves: 25°C Tc, 28 VDC Vin, 100% load, free run, unless otherwise specified.

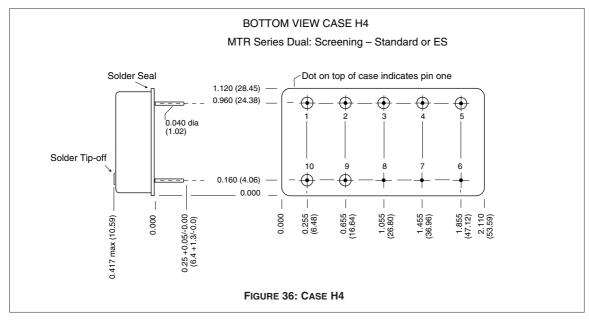
CRANE A CRANE CO. COMPANY A CRANE CO. COMPANY

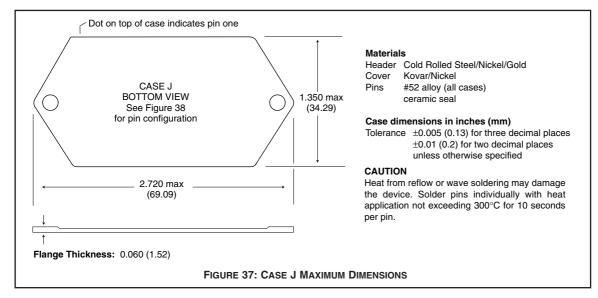
MTR SERIES 30 WATT

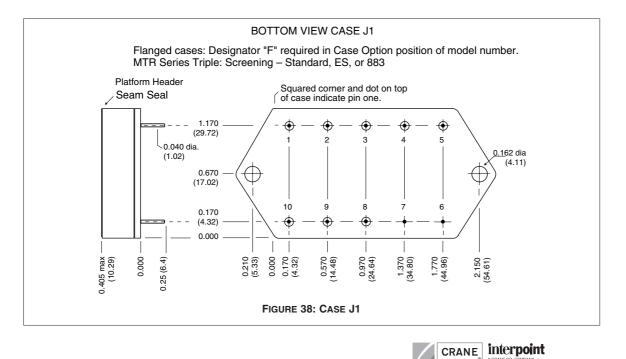


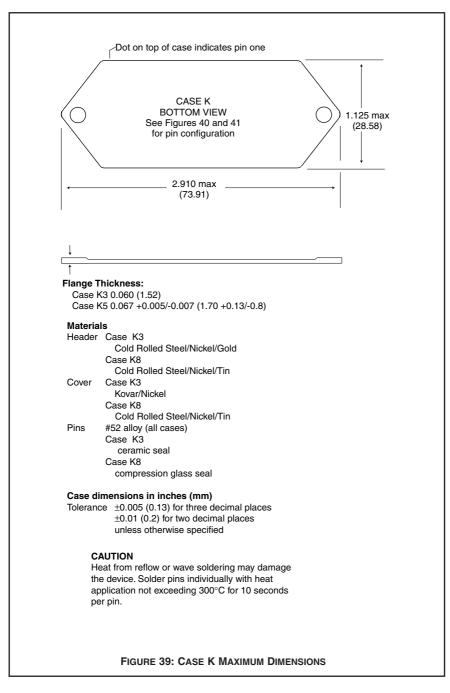


Note: Although every effort has been made to render the case drawings at actual size, variations in the printing process may cause some distortion. Please refer to the numerical dimensions for accuracy.

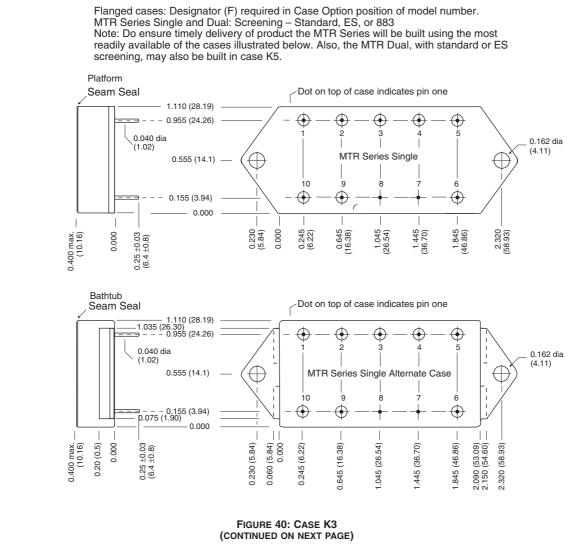

DC/DC CONVERTERS

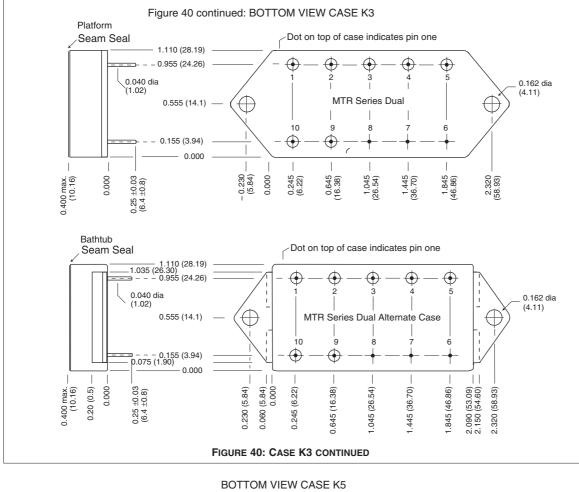

ROSPAC

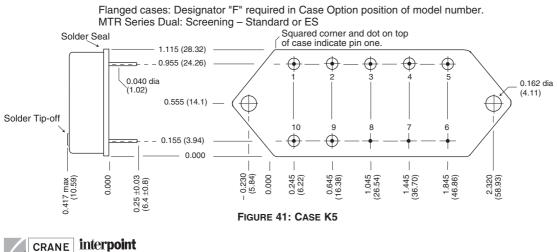

MTR SERIES 30 WATT


DC/DC CONVERTERS

FROSPAC


MTR SERIES 30 WATT


DC/DC CONVERTERS


BOTTOM VIEW CASE K3

MTR SERIES 30 WATT

ROSPA

DC/DC CONVERTERS

ENVIRONMENTAL SCREENING

TEST	STANDARD	/ES	/883 (Class H)*
PRE-CAP INSPECTION			
Method 2017, 2032	VOS	VOC	NOC
Method 2017, 2032	yes	yes	yes
TEMPERATURE CYCLE (10 times)			
Method 1010, Cond. C, -65°C to 150°C	no	no	yes
Method 1010, Cond. B, -55°C to 125°C	no	yes	no
CONSTANT ACCELERATION			
Method 2001, 3000 g	no	no	ves
Method 2001, 500 g	no	yes	no
	110	yco	110
BURN-IN			
Method 1015, 160 hours at 125°C	no	no	yes
96 hours at 125°C case (typical)	no	yes	no
FINAL ELECTRICAL TEST MIL-PRF-38534, Group A			
Subgroups 1 through 6: -55°C, +25°C, +125°C	no	no	yes
Subgroups 1 and 4: +25°C case	yes	yes	no
	,	,	
HERMETICITY TESTING			
Fine Leak, Method 1014, Cond. A	no	yes	yes
Gross Leak, Method 1014, Cond. C	no	yes	yes
Gross Leak, Dip (1 x 10 ⁻³)	yes	no	no
FINAL VISUAL INSPECTION			
Method 2009	yes	yes	yes

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

*883 products are built with element evaluated components and are 100% tested and guaranteed over the full military temperature range of -55° C to $+125^{\circ}$ C.

Contact Information:

www.interpoint.com

Interpoint Headquarters USA Phone: 1-800-822-8782 +425-882-3100 Email: power@intp.com Interpoint UK Phone: +44-1252-815511 Email: poweruk@intp.com Interpoint France Phone: +33-134285455 Email: powerfr@intp.com

20821-001-DTS Rev F. This revision supercedes all previous releases. All technical information is believed to be accurate, but no responsibility is assumed for errors or omissions. Interpoint reserves the right to make changes in products or specifications without notice. MTR Series is a trademark of Interpoint. Copyright © 1994 - 2003 Interpoint Corporation. All rights reserved.

